
White Paper 

  
  

 
 
 
6 Ways Software Rendering Boosts  
Embedded System Graphics 
 
  
 
  
OpenGL® SC running on a proven, safety-critical compliant software rendering platform creates 

unique possibilities for embedded system graphics. Designers running into barriers when looking  

at implementing graphics with challenges like DO-178B/C certification, radiation hardening, texture 

engines and overlays, FPGA implementations, distributed displays, and SWaP have a new option 

in IGL®.  

 

Inside is a look at the advantages OpenGL provides, one key item embedded developers will likely 

want to avoid in a graphics implementation, and how IGL brings a proven solution for software 

rasterization into the realm of safety-critical systems. Then, the six “boosts” for critical situations 

where IGL outperforms alternatives are explored.  

 
  
 
 

 
 

September 2012 
ENSCO Avionics, Inc. 

 
 
 

IGL® is a product of ENSCO Avionics, Inc. 
ENSCO Avionics, Inc. is a wholly owned subsidiary of ENSCO, Inc. 

 



6 Ways Software Rendering Boosts Embedded System Graphics 

ENSCO Avionics, Inc. 2 

Introduction 
 
Graphic displays are becoming part of more and more everyday devices, from smartphones to cars 
to appliances and home automation devices. This is driving the expectations of users, who are 
looking for clean, fast, simple-to-use graphics when choosing a device. Well-executed graphics 
interfaces contribute to faster learning and ease-of-use of devices, and the efforts of designers to 
achieve a superior user experience have a large payoff.  
 
In safety-critical fields, such as avionics, defense, medical, industrial, and others, the importance of 
graphics goes well beyond user experience. Decisions which can impact significant outcomes are 
based on a real-time presentation of graphical information, which must be accurate and trustworthy 
at all times. Hard failures are unacceptable, but soft failures such as slowing down or skipping 
frames entirely can also lead to dire consequences. Many systems require certification to a safety-
critical standard such as DO-178B/C, which attests to the trustworthiness of the software.  
 
Some safety-critical environments present even bigger challenges for designers of embedded 
systems. The constraints of performance, and system and life cycle cost come into play. In space-
borne applications, radiation tolerance is mandatory, while in defense applications size, weight, 
and power (SWaP) are optimized. These requirements make the use of many commercial-grade 
hardware graphics processor units (GPUs) less attractive, or even infeasible in some cases.  
 
IGL is a safety-critical, DO-178B certifiable implementation of an OpenGL® SC 1.0 software 
rasterizer. By using OpenGL SC and software rendering, designers of embedded systems gain 
advantages in determinism, reuse, configuration longevity, certification, and system size.  
This white paper explores how software rendering, such as implemented in IGL, can solve 
problems in safety-critical embedded systems. After a short overview of OpenGL SC, the key 
limitation of gaming-class graphics in safety-critical applications is discussed. An architectural 
overview of IGL follows, and then six ways software rendering boosts embedded system graphics 
are illustrated.  
 
 
OpenGL Brings Reusability and Realism 
 
OpenGL is an industry-standard graphics API, maintained by the Khronos Group 
(www.khronos.org), which first gained popularity in visualization workstations as a way to render 
complex 2-D and 3-D scenes with many objects and detailed visual effects, and yet keep control 
over graphics primitives. OpenGL applications create nearly the same visual effects on any 
platform and operating system that support the standard.  
 
OpenGL applications are a stream of commands that act on a data set. Commands can draw an 
object, create an effect, or change a configuration within the graphics pipeline. Objects are lines or 
polygons. Effects in the current version, OpenGL 4.3, include texture mapping, alpha blending, fog, 
anti-aliasing, and more.  
 
The powerful graphics effects, cross-platform support, and code reusability achievable with 
OpenGL attracted two groups of computer technologists: game developers, and hardware GPU 
developers. Game developers could create source for OpenGL, which could immediately be 
deployed on any supporting platform, and could be sustained as hardware platforms evolved 
quickly. Hardware GPU developers ― companies including AMD™, NVIDIA®, and S3 Graphics — 



6 Ways Software Rendering Boosts Embedded System Graphics 

ENSCO Avionics, Inc. 3 

concentrated on developing engines that could efficiently execute OpenGL graphics pipelines with 
more objects and more effects, and continue to develop increasingly faster GPUs.  
 
As OpenGL continues growing in capability, more and more developers jump on the standard. 
Gamers press for increasing visual realism, and the OpenGL standard continues to evolve by 
adding advanced effects. Smaller GPU cores, suitable for lower power system-on-chip processors, 
have found their way into smartphones and tablets, and OpenGL has also become a standard in 
mobile designs. The vision of multiplatform, realistic graphics is compelling.  
 
 
Critical Objects Must Be In Sight  
 
Adding more realism in OpenGL solved issues for many market segments, but created a big 
problem for the safety-critical community. In order to be trustworthy under all conditions, safety-
critical applications must abide by a strict sense of determinism. Real-time isn’t just a benefit in 
these applications; it is an absolute requirement.  
 
The superscalar, multithreaded technology used within hardware GPU architectures creates a high 
performance potential and the ability to manage many objects and effects, but does little to 
guarantee the delivery of one or more objects through the graphics pipeline within a fixed time 
window. This is manifested in a phenomenon most gamers have observed firsthand: lag. Of course 
lag can result from waiting on data from a distributed application, but more often lag indicates the 
GPU graphics pipeline is temporarily overwhelmed with everything being asked of it.  
 
When a game session begins, the pipeline is well under control. There is usually some type of map 
with scenery, and complex symbols representing characters or vehicles begin moving around. But 
as the game advances and action ensues, things get complicated: events like explosions, 
splashes, weather, smoke, and changing scene detail create a mix of more and more objects the 
GPU has to render. If the gamer has effects settings relatively high to achieve more realism, those 
advanced effects are being applied to a rapidly increasing number of objects in play.  
 
At some point, the GPU buckles under the sheer weight of all the effects in the pipeline, and one of 
several things happens to the rendering. Portions of the scene, inevitably objects of interest like 
opponents, can appear or disappear unexpectedly or warp in location. Even worse, frame rates 
slow to a crawl, or a complete stop. When the display resumes at the expected frame rate, frames 
are missing, with whatever action happened in them gone.  
 
While lag is an irritating loss of control for gamers, lag can be hazardous and is always 
unacceptable for safety-critical applications. There are several ways to mitigate lag: buy a faster 
hardware GPU, turn down the effects settings, or avoid using some effects altogether. In short, the 
first two options aren’t guaranteed to eliminate lag from occurring, and are no help while lag is in 
progress.  
 
The safety-critical community considered this when creating OpenGL SC (the SC stands for safety-
critical), which is based on OpenGL 1.3. By restricting OpenGL SC operations to a mostly effects-
free profile, safety-critical applications benefit from smaller code size and less complexity. Features 
such as a texture matrix, compressed textures, multisampling, dithering, and fog are eliminated, 
and general texturing and alpha blending are restricted to a subset of capability. Features added to 
OpenGL SC are display lists, draw pixel and bitmap capability, and line anti-aliasing.  



6 Ways Software Rendering Boosts Embedded System Graphics 

ENSCO Avionics, Inc. 4 

With a simpler code base and limited effects to manage, a software rasterizer running OpenGL SC 
becomes an intriguing approach to creating graphics in a safety-critical embedded system.  
 
 
How IGL Works  
 
IGL is a pre-compiled, C-callable library, and is platform independent with support for a variety 
operating systems and processor architectures. Its API conforms to OpenGL SC 1.0, with the 
addition of several configuration and common utility functions.  
 
The simple design of IGL features three main subsystems, as shown in Figure 1. Applications 
request IGL services by feeding OpenGL commands into a state machine that maintains 
information about the configuration and graphics data. The rendering engine then takes over, 
performing the necessary transformational computations on the data set. Finally, formatted data is 
passed to a frame buffer for display, with a variety of possible configurations.  
 
  

 
  

Figure 1 — IGL Software Rasterizer Architecture 
 
 
 
OpenGL is fundamentally a state machine that accepts commands and manages variables. IGL 
brings all the expected capabilities of OpenGL SC to the embedded graphics application 
programmer, and offers additional flexibility. The IGL State Machine can accept commands directly 
from an application residing on the same processing core, or remotely from a different processing 
core generating graphics requests via an optional IGL Platform Driver.  
  
The IGL Rendering Engine implements the library of OpenGL SC functions, computing the 
required transforms on the graphics pipeline. It applies the defined states and commands to a 
matrix stack, which encompasses texture, display list, color depth, and frame buffer data, along 
with local OpenGL data structures. Objects are rendered into a scene, and passed to the Frame 
Buffer.  
  
The IGL Frame Buffer is a physical block of memory, which can be in local memory space, or PCI 
or PCI Express memory space. IGL supports display resolutions up to 2047 x 2047 pixels. All IGL 
needs to know is where the Frame Buffer is located, not the nuances of displaying it. Various third-
party hardware implementations are available to take the Frame Buffer memory and display it on 
HDMI, DisplayPort, DVI, and legacy VGA displays.  
  



6 Ways Software Rendering Boosts Embedded System Graphics 

ENSCO Avionics, Inc. 5 

Conformance to OpenGL SC and simplicity in design are just the beginning of the IGL story. What 
is exciting about the idea of a software rasterizer is the ways it addresses problems embedded 
system designers face with graphics ― problems difficult and expensive to solve using other 
approaches.  
 
 
6 Boosts for Critical Situations  
 
If the embedded system setting is benign, with needs for high performance graphics or very large 
resolutions, there are many great hardware solutions that can fill the need. The use of OpenGL 
brings the realism and cross-platform advantages already discussed.  
 
Where software rasterization starts to outperform alternatives is when the settings become critical, 
with constraints making the size and cost of specialized hardware a larger factor, and performance 
is measured more by latency on objects of interest. Here are six ways IGL and software rendering 
can boost unique solutions, solving challenges common in safety-critical environments.  
 
 
Boost 1 – Safety-Critical Certification  
 

Many safety-critical applications have to pass a stringent set of criteria, such as DO-178B/C 
and DO-254 for avionics. Complex solutions are difficult to verify, and simple solutions are 
preferred by certifying agencies. IGL complies with DO-178B, has been certified in avionics 
applications, and is a Reusable Software Component with artifacts and traceability required 
by the standard. There are several advantages to using IGL in a situation calling for 
certification, but perhaps the largest is having one OpenGL SC platform across devices and 
over the life of the project.  
 
IGL enables stability, as an API library never goes obsolete. OpenGL SC application code 
does not have to change to support multiple platforms or different hardware architectures. 
There are no hardware-specific drivers which must be certified, or re-certified, as hardware 
changes. This is a big difference compared to a hardware-based strategy, which can 
involve lifetime buys or re-certification cycles as hardware becomes obsolete, and may 
have a software impact if drivers supporting newer hardware are different.  
 
The tasks of certification to DO-178B/C can be substantial, and using proven solutions can 
save a project from increased costs and schedule risks. The optional IGL Certification Kit 
service delivers a suite of 25 compliance documents that analyze and verify configuration 
traceability and code integrity. Because every line of code in IGL is known, understood, and 
proven in safety-critical applications, designers can rely on it as a stable platform, and focus 
on the details of creating and certifying an OpenGL SC application.  
 

 
Boost 2 – Radiation Hardening  
 

In benign settings, background radiation doesn’t cause a concern for electronics, but in 
space and nuclear contexts it is a quite different situation. Space-borne applications, or 
those designed for some medical and industrial environments, must be able to endure 
significant radiation, sometimes well beyond levels humans should be exposed to.  



6 Ways Software Rendering Boosts Embedded System Graphics 

ENSCO Avionics, Inc. 6 

Most semiconductor processes, especially small geometry silicon typical of high 
performance CPUs and GPUs, just don’t withstand concentrated doses of radiation. Soft 
errors can be injected, which corrupt data, or hard failures can occur.  
 
Specialized, radiation-hardened processors or field programmable gate arrays (FPGAs) 
have the radiation tolerance necessary to perform error-free in these environments. Many 
of the latest “rad-hard” processors have been developed with processor cores for advanced 
software applications. Display interfaces are typically based on simpler mixed signal 
semiconductors from mature process nodes, with larger geometries not as prone to 
radiation upset.  
 
Once the rad-hard processor is established in a system, IGL functions can run as any other 
application software would. This means rad-hard processors can now run OpenGL SC as 
part of their application suite without requiring any processor-specific features, or having to 
augment the CPU with non-hardened GPU hardware.  
 

 
Boost 3 – Texturing Engine and Overlays  
 

Since IGL is based on OpenGL SC, programmers familiar with OpenGL programming can 
be productive immediately. Additionally, a unique feature of a software rasterizer is its 
ability to coexist with a hardware GPU in a system. Combining these two ideas, partitioning 
the application so each rendering engine leverages its strengths, creates an immense 
amount of flexibility in designing embedded system graphics.  
 
One scenario is to use a hardware GPU to create the outline of the scene, using polygons, 
and use IGL to map textures onto polygons to create effects. By using IGL to create effects, 
the hardware GPU is offloaded and determinism is preserved for critical objects.  
 
Another way to use IGL is to have it completely manage the symbols of interest ― such as 
tracked targets ― on a background managed by a hardware GPU. This can be done with 
an overlay or video-blending strategy depending on the display implementation.  
 
The objective in all these approaches is to ensure that symbols of interest in the scene are 
positioned exactly where they are supposed to be, in real-time, at all times, while the 
background doesn’t change as quickly.  
 

 
Boost 4 – FPGA Acceleration  
 

While IGL is platform independent and does not require specific processor features to run, 
there is an opportunity to take advantage of hardware to gain performance. The IGL 
rasterization engine is essentially a number cruncher, performing repeated operations on a 
data set to transform the graphics pipeline into a scene. Most OpenGL SC applications are 
implemented with calls to 15 to 20 API functions, meaning the payoff to accelerating an 
often-used function can be large.  
 
Running IGL in an FPGA with a processor core and configurable logic can provide that 
acceleration. By analyzing the OpenGL SC functions in use and the underlying math  



6 Ways Software Rendering Boosts Embedded System Graphics 

ENSCO Avionics, Inc. 7 

involved, a multiply-accumulate block in the FPGA can be dedicated to create an IGL 
function co-processor. This can be a very efficient optimization since there is a minimal set 
of hardware applied, as opposed to tapping a digital signal processor (DSP) or vector 
processing unit in the same role.  
 
An optional utility for IGL, the Performance Monitoring Graphics Library (PMGL), provides 
counts and timing of function calls and measurements of frame rates. This can aid in both 
optimizing OpenGL SC programming and exploring the possibilities for FPGA acceleration.  
 

 
Boost 5 – Distributed Displays  
 

In a simple embedded system, graphics are displayed locally from data generated on a 
processor core running the application. In larger systems with multiple processor cores, 
sometimes the display is not attached to the same core as the graphics rendering engine. A 
single graphics display might need to merge data from several distributed sources.  
 
With IGL, managing distributed displays becomes easier as the same software can be 
deployed on nodes as necessary. Graphics nodes do not have to be local to processing 
nodes in these configurations. Using the optional IGL Platform Driver, commands can be 
sent using a PCI-like protocol over a bus or a network. This allows another processor core 
to perform computations and request operations on a display. It also allows a display to be 
replicated on a remote core, staying in sync. While network and bus latency can be a 
concern as with any application, this provides flexibility at a lower cost than adding 
specialized hardware.  
 
Noteworthy here is the idea of dedicating a processor core, either a standalone CPU or a 
core in a multicore processor, to an application running IGL managing the critical objects in 
a scene as a graphics offload engine to a hardware GPU or another instance of IGL. This 
can help not only with graphics performance, but with certification of a system, as graphics 
operations are partitioned.  
 

 
Boost 6 – Reducing SWaP  
 

Size, weight, and power (SWaP) are prime considerations in more and more applications. 
Put mildly, many of today’s high performance GPUs are physically large, power-hungry, 
and require active cooling. Eliminating a GPU, or more than one, can be a huge SWaP 
savings in a system, and reduce maintenance and life cycle costs as well.  
 
Most high-performance microprocessors have enough computing power to run OpenGL SC 
software rendering. IGL has a compact footprint ― less than 1MB of memory supports 
general operation ― and the Frame Buffer size depends on the display resolution. Since 
IGL is a library, it renders graphics when it is called, efficiently, without consuming 
resources in the background.  
 
If a project is up against a power supply budget, or doesn’t have enough, or the right kind, 
of cooling available, or just needs to stay within as small a space as possible, IGL gives 
designers an alternative for embedded systems graphics implementation.  



6 Ways Software Rendering Boosts Embedded System Graphics 

ENSCO Avionics, Inc. 8 

Putting IGL to Work In Your System  
 
With the advantages and openness of rendering OpenGL SC graphics in software, its conformance 
to safety-critical standards, and flexibility in configuration and use, IGL creates opportunities to 
solve problems in designing embedded systems graphics solutions.  
  
  

 
 

 
Figure 2 — IGL Software Rasterizer Image Quality 

 
 
IGL is platform independent. It runs on Power Architecture®, Intel® Architecture, and ARM® 
architecture processors, and targets popular operating systems for safety-critical environments 
such as DEOS™, INTEGRITY®, Linux®, PikeOS™, and VxWorks®, and an evaluation version is 
available for Windows®. Depending on the configuration, it is delivered in a shared (.so or .dll) or 
linkable (.a or .lib) library. Applications calling IGL can be compiled using a C compiler and 
standard C libraries; safety-critical applications for certification require using a certified C compiler.  
  
More information, including a user manual and evaluation tools, is available online at  
 

www.ensco.com/avionics-products/igl 
 

To learn more about IGL licensing, and services including evaluation, porting, and certification, 
contact Ray Niacaris at +1-909-593-2055, or sales@idatavs.com. 
 
 

ENSCO Avionics, Inc. Headquarters 
3110 Fairview Park Drive, Suite 300  
Falls Church, VA 22042-4501 USA 
 

General   ensco.com/avionics 
Technical Support idatavs.supportportal.com 

+1-877-825-4890  
  support@idatavs.com

 
 
 
Copyright © 2012 ENSCO Avionics, Inc. All rights reserved. All trademarks are the property of their respective owners.  


